Fozition of the HMoons of Jupiter
Input Year: z2az2

9 STORP =tatemsnt, 154:1

) sz81

userBAEEEEE S

| | —

Published by:
Timothy Swenson
swenson_t@sbcglobal.net
swensont@lanset.com

ZXzine is published as a service

to the Sinclair ZX&1

community. Writers are invited

to submit articles for

publication. Readers are invited

to submit article ideas.

Created using Open
Source Tools:

- OpenOffice
- Scribus

- Gimp

- S7Z81

- Zesarux

Copyright 2022
Timothy Swenson

Creative Commons License
- Attribution
- Non-Commercial
- Share-Alike

You are free:
- To copy, distribute,
display, and perform

the work.

- To make derivitive
works.

- To redistribute the
work.

Table of Contents

Editorial

T/S 2068 Fonts

Wireframe for T/S 2068

Moonphase and Jupiter's Moons

UDG Character Generator

Lunar Eclipses

7X81 Fonts

Editorial

I've been having Zoom meeting with other T/S 2068
enthusiasts. David Anderson, who hosts
www.timexsinclair.org, started the meetings. He's
been beating the drum of preservation to the team.
He's looking for Timex/Sinclair books, programs,
newsletters, etc. to preserve. Some of the meeting
attendees have come up with some good
documents.

Since I was a member of a number of T/S user
groups, [have a couple of binders full of
newsletters. A lot from the Capital Area Timex/
Sinclair (CATS) user Group and TimeLinez, which
was the newsletter for the three SF Bay Area user
groups, East Bay, Peninsula and Silicon Valley.

I have spent a number of hours scanning in these
newsletters. I've also scanned a few other sorted
newsletters that [have. I had previously scanned
some International QL Report (IQLR) newsletters.

All of this David has converted to PDF files and
posted to the Internet Archive. I always knew that I
was keeping these newsletters to eventually
preserve them. It is good to get it done and now
others can read these newsletters.

I never really had much T/S 2068 software, so |
can't help on the preservation of software.

This issue has a few articles based on the material I
found while scanning the newsletters. I hope it is
interesting to some.

T/S 2068 Fonts

One feature of the T/S 2068 that I had never
tinkered with is using a different font. Iknew a
number of Spectrum games that used a different
font, but I had not thought about it on the T/S 2068.
The general process is the same on the T/S 2068 as
it is on the Spectrum.

In most cases, the font is loaded from tape and then
used until the computer is powered off. I did not
want to do it that way. I wanted to have the font
embedded into the program, be it a BASIC program

or an assembly language program. To do this I
needed a font to be in numbers for a DATA
statement and not a binary file.

I did some looking online and found the website of
Jim Blimey. He found some fonts online and had
converted them for use on the Spectrum. They
came in a number of formats, one being a text file
with the fonts in defb statements for use with
assembly programs. There was also an image (png)
file of each font so it was easy to see what they
looked like.

HELL) . HORLID!

3 5TOP STATEMENT, 28#:1

Jim has two font zip files; 24-zxspectrum-fonts.zip
from a user called EPTO on Github, and
charbank.zip from the "Load'n Run" magazine from
Italy.

To test with, I picked one of the fonts from the first
zip file. 1 used an editor to change the "defb" text to
"DATA". Ithen wrote a short program that loaded
the font from the DATA statements into memory.
Next was the POKE to the CHARS system variable
to point the system to use the new font. The last bit
of the code was to print "Hello, World" in the new
font. I processed the program through zmakebas
and loaded the .tap file into Zesarux. The program
ran as expected and showed a new font on the
screen.

The next part of the project was to do the same
using assembly. As I was writing a loop in
assembly that would copy the font from the defb
statements to memory, [was stumbling on what
registers to use. I needed a pair for keeping track of

==

the location of the font and another par to keep track
of the destination of the font, and another register to
keep track of how many bytes is being moved.

As I was breaking out the Z80 book by Lance
Leventhal, I ran across the LDIR command. Instead
of writing a loop, the LDIR command does all of
the work. I just needed to load into HL where the
font was coming from, into DE where the font was
going to and into BC the number of bytes to move.
LDIR does the copy, increments both DE and HL,
and decrements BC. The whole process exits when
BC=0.

Initially my program was not working. It seems to
work, but when I did the POKE to set CHARS, the
system crashed. I was thinking there was something
wrong with the POKE, but it turns out I had
swapped the purpose of DE and HL. Once I had
that straightened out, the program worked.

The one downside of my approach is that the font
will take up double the normal space for the font.
There will be the font in the source code and the
font in memory. Each font is 768 bytes, so with a
48K system, I'm fine with the extra cost in memory.

The values used in fonts is basically the same as
used in User Designed Graphics (UDG). Users can
create up to 21 UDG's, but if you need to create
more, it is possible to create a new font with a
number of the characters to be functionally UDG's.

I was thinking that I might do something like that,
but I did not want to use a new font and add what I
needed, but I wanted to use the default font. I wrote
a program to go through the 96 characters in the
default font (by reading the ROM) and show the
decimal numbers for each 8 bytes of the font. I then
put that into a text file with DATA statements. [
used that font in my program to load a font just to
test that I had pulled the default font from ROM
correctly, that I had put it into a font file correctly
and that the default font could be loaded correctly.
Now I could edit the default font and replace any
characters with ones of my own. That will be a
project for another time.

Wireframe for T/S 2068

Back in college I took a Computer Graphics class.
One of the items covered was wireframe 3D
graphics (well, 3D showing in 2D). I wrote a
program for the QL using the technique used in the
book from that class. I decided to port the program
over to the T/S 2068.

The port was fairly straight forward. There was
nothing in the code that the T/S 2068 could not
handle. When I ran the program, it failed. I then
realized that the QL and T/S 2068 DRAW
commands are far different. On the QL, DRAW is
absolute, meaning that the start point and end point
are the coordinates on the screen. With the T/S
2068, the points are relative. You have to first
PLOT a point to set the start point, then the point
used in the DRAW command is relative to the
starting point. So, I just had to some a little
conversion and the program worked.

The program is mostly composed of subroutines
that are called to manipulate the 3D object. The
user then writes their own code to call these
routines. The wireframe.bas program has the
subroutines and an example of "user code". You can
change this "user code" section and do something
different.

The subroutines form a wireframe library. The
routines in the library are:

square - defines the data set for a cube.

aEOE =

pyramid - defines the data set for a pyramid.

tetra - defines the data set for a tetrahedron.

"’ n

loaddata - once "square”, "pyramid" or “tetra” are

9 STOP statement, Sd4:1

called, then this subroutine is called to load the data
into the arrays.

rotz - rotate the object in the Z axis.
roty - rotate the object in the Y axis.
rotx - rotate the object in the X axis.

enlarge - makes the object bigger in screen.
shrink - makes the object smaller on screen.
display - draws the object on screen.

On the QL these were procedures that can be called
by name. On the T/S 2068 they are subroutines that
can be called by name using labels with zmakebas.
To use rotz, do this:

gosub @rotz

There are two additional subroutines included in the
program:

initspin - does a rotation in all three axis to show off
the object better on the screen.

spin - does a spin of 10 rotations in the Z direction.
Run the program to get a good idea of how things
work and how quick the program is in drawing the

object.

It is possible to define new objects. The two main
data statements define the vertexes and the edges.

The vertexes are the 3D points that define the shape
of the object. The edges define the lines between
the vertexes. It is the lines that are drawn.

The first data in each line is the number of vertexes
or edges. The rest of the data statement are those
vertexes or edges. The first vertex is #1, the second
#2, etc. Edges are defined as two vertexes and the
vertexes are referenced by number.

The middle of each object is 0,0,0. With the cube
(not sure why I called it a square in the code), it is
10 units on each side. That is why it is comprised of
vertexes with 10 or -10.

Moonphase and Jupiter's Moons

I've done a number of astronomy programs on the
ZX81, but really have not ported any to the T/S
2068. I found two programs that would do well
with a port and they would benefit from the better
graphics on the T/S 2068.

Moonphase is a simple program that when given a
date, will determine the phase of the moon for that
date, from a range of 8 phases. Most of the
moonphase programs generate the same 8 phases.
The base program just prints out the phase based on

Laxing Crescent

the date. With the T/S 2068 version, the phase of
the moon is drawn on the screen.

Given how long it has been since I used the T/S
2068 arc drawing graphics, it took me a while to get
the hang of'it. I had to re-learn how to get the arc to

EOE =

Faosition of the HMoons of Jupiter

Input
Input

bend one way or the other. How to get the distance
of the arc right. I even had to make sure which way
was waxing and which way was waning.

Jupiter's Moons is a program that will determine the
locations of the four main moons of Jupiter, based
on the date. The result is the distance in Jupiter
radians of the moon from Jupiter. The four major
moons are lo, Europa, Ganymede and Callisto. The
program takes some time to calculate the positions.
Once done, it will print out the distance of each
moon and then it will graph it in relation to Jupiter.
A circle is drawn for Jupiter and the moons, with
each being in a different color. If the moons are too
close to each other or Jupiter, there can be some
color clash with the most recent circle drawn over
writing the earlier color.

UDG Character Generator

While scanning some TimeLinez newsletters, |
came across an book review by Walt Gaby of the
book "Timex Sinclair Color Graphics" by Nick
Hampshire. In his review, Walt included a program
that helps define the codes needed with User
Defined Graphics (UDGs). Having touched on T/S
2068 fonts (which are similar to UDGs), I thought I
would type in the program and see how well it
functioned.

If I need one or two UDGs I found it simple to just
get some graph paper, draw the UDG and then use a
computer calculator that can convert binary to
decimal. Of course, if I need to make changes
during the design process I have to make sure I use

a pencil so I can make changes. With this Character
Editor, changes can easily be made.

The program draws a grid for the 8x8 pixels. The
arrow keys are used to move around the grid. The
"a" and "d" keys are used for setting a pixel or
unsetting a pixel. The original program used "A"
and "D", but I change it to use lower case so that the
shift key would not need to be used.

Once pixels are set, the value of each row is shown
and the UDG up to that point is also shown.

There is no provision for saving a UDG. It is
assumed that you will just write down the 8
decimals numbers that define that UDG and then
use them in your programs.

Character Humber 1

Existing SJdmbol: A

sl

Usze arrows fto move CcUrsor [+]

i

=M
ol

SBEERREUE

Pres=zs:

m3J 0w
e
aooo

Lunar Eclipses

While scanning some Capital Area Timex Sinclair
(CATS) newsletters I ran across this program that
will predict lunar eclipses for a given year. All
though I found it in the CATS newsletter, the
program was originally published in Sinc-Link
newsletter by Mel Richardson. The original code
was written by Herbert Raab of Austria, using
different code bits published in "Sky & Telescope"
magazine. Mel converted the program to run on
Sinclair BASIC.

Liking astronomy programs, I had to type the
program in and see it working. Once typed and all
of my typo's corrected, I ran the program for the

EOeE

example year, 1989. The results that I got matched
what was published. That was proof that it was
working as advertised.

Some astronomy programs are only good for a few
given years. The further way from those years the
less accurate the program is. To see if this program
was like that, I ran it for 2022. We just had a lunar
eclipse in the middle of May, so I'd see it it would
catch it. I started the program up, entered 2022,
waited a few minutes and there is the May eclipse.
The date format is the European format of day,
month, year. The times are in Universal Time, so
one needs to convert to local time. The program
gives the time of the peak of the eclipse. The
information I had had only the start and stop times
of the eclipse, but the given max time of the eclipse
looked right.

ENTER “ERR:

ECLIFSE DRATE: 16 -S-2822
MAXIHUH FPHASE: dH 9H UT
FERUFMERAL MHMAG: 2. 385
UMERAL HMAG: 1.4@7

SEMICURAT IONS -—-
FHUMERA : 1=9H
UHMERA : 1@5H
TOTHLITY : 42M

Letting the program run, the next eclipse will be on
November 8 at just before 11 am UT.

From the article on the program, the output is "the
date and time of maximum eclipse, the magnitude
into the penumbra and umbra if that occurs, the
semiduration times and length of totality if that
occurs. Magnitudes are in lunar diameters into the
shadow zones and semiduration times are the times
from first contact with the shadow zone to
maximum or from max to last contact."”

7 X81 Fonts

After tinkering with fonts on the T/S 2068, I was
wondering if something could be done on the ZX81
to change its fonts. The ZX81 does not have a way
to define a new font, so another method would have
to be tried.. Since I am using emulators, the ZX81
ROM is really nothing more than a binary file. If]

know where the character definitions are stored in
the ROM file, I could use a hex editor to replace
these character definitions with ones of my own.

o=

@.-a

After some digging, I found that the character
definitions are stored in locations 1E00 to 1FFF. To
keep it simple my first test was to change the 2nd
character in the table, CHRS$(1) which is one of the
graphics characters. To make sure I knew what the
characters in ROM looked like (and their values), |
created a zxgetfont.bas program that would read the
characters from ROM, output the values and show
the character. This would allow me to make sure I
was editing the right values in the ROM, since |
knew what the original values should be.

OO0O0000000000000000a000

5 e e s e e s s s e e e e e i e e e e e

OO000000000000000000000

o o e e O o o o o o e

ElEEEEEEEEEE

Lt Lo | | | |l o
E 4

=, P e e e e e e
|l e e e e e e e e e e e e e e e e e
L= I o ol ol ol o o o o ol ol il

4p]

I quickly created my own UDG character, a bit of a
small vertical rectangle. I used "hexedit" in Linux
to open the ROM file, go to the right location and
change the original values to my new character.

aEOE =

With sz81, you can't change ROMs in the
configuration, so I had to save to original ROM file,
zx81.rom, to another file name, zx81.rom_orig. [
then copies over my new ROM file to zx81.rom. I
started sz81 and entered:

PRINT CHRS(1)
and there was my new character. It worked.

The next step was to replace the numbers and letters
in the ROM with a new font. Using the fonts that I
found for the T/S 2068, I picked the "Digital" font.

The font came with the new characters in decimal,
but [needed them in hexadecimal. I changed the
name of the font file from "digital.asm" to
"digital.csv" and loaded it into a spreadsheet. Since
a CSV is a comma separated file, the individual
values went into their own cells. Now I used a
dec2hex function to convert the values. I know
which ones I wanted, so I added a column and
marked the rows that were the numbers and the
letters.

I copied zx81.rom_orig to zx81.rom_dig for the
new font. Using the hex editor, I found the location
of zero (0) which is the first of the numbers. |
carefully entered in all of the new values for the
numbers and then the letters (A-Z). I knew I had it
worked out right, as the last character in the ROM
table was Z and I was on Z when I got to the last 8
bytes in the table. A quick save of my edits and |
was ready to test.

I copied the zx81.rom_dig to zx81.rom, started sz81
and I now have a whole new font.

For each new font you might want, you will need to
have a copy of the ZX81 rom modified with that
font.

If other emulator read the ZX81 ROM from a file,
then this process should work with those emulators.

T "HELLO WORLD™

o FOfpdg: Tl) »oe=d=%sr , ,A1l0F
HEE?HEMFEEHJHLI.'I'IFLIEIF'E!HE"'UUI.JJH‘:‘E

g.-14

aEOE =

